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Abstract. The stationary state of stochastic processes such as reaction–diffusion systems can be
related to the ground state of a suitably defined quantum Hamiltonian. Using this analogy, we
investigate the applicability of a real-space renormalization group approach, originally developed
for quantum spin systems, to interacting particle systems. We apply the technique to an exactly
solvable reaction–diffusion system and to the contact process (both ind = 1). In the former case,
several exact results are recovered. For the contact process, surprisingly good estimates of critical
parameters are obtained from a small-cell renormalization.

1. Introduction

Reaction–diffusion systems and other interacting particle systems are relevant for the
description of several phenomena in physics, chemistry and biology [1]. In the past, they
have been mainly modelled by (nonlinear) partial differential equations [2], a description
which implicitly contains a mean-field assumption. Such a description is, however, no longer
appropriate in low dimensions where fluctuations are important. To take these into account
one turns to a description of the reaction–diffusion system in terms of a stochastic process.
This can, for example, be realized by adding a noise term to the partial differential equation.
In recent years however, particular attention has been paid to models defined on a lattice. It
has been found that these can be related to a number of interesting topics in modern statistical
mechanics such as growing interfaces [3], phase transitions into an absorbing state [4], exactly
solvable quantum spin chains [5], persistence exponents [6] and so on.

The systems which we will study here are defined on a lattice but evolve in continuous
time. At each site of the lattice, one can have (hard core) ‘particles’ which can perform
a random walk and/or can undergo one or several ‘reactions’. In this paper we will limit
ourselves to systems with one type of particle. Each lattice site can then be either empty (∅)
or be occupied by a particle(A). As an example, consider a system in which particles perform
random walks and where two particles on neighbouring sites can ‘annihilate’ (i.e. undergo the
reactionA +A→ ∅ + ∅). In a simple mean field approach the density of particlesc(t) in this
system decays asymptotically as 1/t . It is common to introduce a critical exponentθ which
describes the decay of the density (c(t) ∼ t−θ ) and which therefore in mean field theory equals
1. An exact solution of the diffusion–annihilation model ind = 1 (where it is equivalent to the
T = 0 Glauber dynamics of an Ising model on the dual lattice) shows, however, thatθ = 1

2 [7].
This latter value is also found experimentally in systems which are thought to be described
by the diffusion–annihilation model. Moreover,θ shows a large universality across materials
and initial conditions. The same value forθ is also found when the experimental situation
is described more correctly by a diffusion–coagulation (A + A → ∅ + A, A + A → A + ∅)
0305-4470/00/050907+13$30.00 © 2000 IOP Publishing Ltd 907
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model [8]. Hence, as in the theory of equilibrium critical phenomena one needs a scheme
which at the same time explains the observed universality and gives precise values for critical
exponents such asθ . One is therefore naturally led to a search for renormalization group (RG)
approaches to stochastic systems.

Mathematically, the stochastic process is a continuous time Markov process. Using the
formal equivalence between the master equation and the Schrödinger equation in imaginary
time, one can set up a field theoretic formulation for stochastic systems which in turn can be
used in the construction of a renormalization approach [9]. Critical exponents can then be
calculated in anε-expansion around the upper critical dimension, which in this case equals 2.
This approach is by now well established and has been applied to many interesting systems.
As an example, we mention the much studied branching and annihilating random walks
(BARWs) [10], where besides diffusion and annihilation, particles can undergo branching
processes (A → (m + 1)A). The competition between annihilation and branching leads to a
non-equilibrium phase transition where the stationary state particle densitycst(≡ lim t→∞ c(t))
goes to zero in a continuous way as a function of the rates of the different processes. Near this
transition, several critical exponents (static and dynamic) can be introduced. It has been shown,
both numerically and using the field theoretic RG, that the universality class of the transition
for BARW is completely determined by the parity ofm [11]. Form odd, the transition falls
in the universality class of directed percolation (DP), whereas form even a new universality
class appears. On the basis of very precise simulations, Jensen [12] conjectured thatθ = 2

7

andβ = 13
14 whenm is even (β describes the waycst goes to zero near the transition). So far, a

precise analytical calculation of these exponents has, however, not been possible. Menyhárd
andÓdor propose the valueβ = 1 on the basis of a perturbation around mean-field theory [13].
Using a loop expansion at fixed dimension, Cardy and Täuber findβ = 4

7 [11]. Given the
existing uncertainty in exponent values, there is clearly room for the introduction of new,
analytical approaches to the BARW and related models.

In this paper, we investigate the possibilities of a real-space RG approach to interacting
particle systems. Our starting point is again the equivalence between a stochastic system and
a quantum mechanical one. In the past, several real-space RG approaches to quantum lattice
systems have been introduced. We must mention here as an example thedensity matrix RG
(DMRG) which has been very successful [14]. Currently, several research teams in the world
are investigating the applicability of the DMRG to stochastic systems [15–17]. Unfortunately,
the name DMRG is a bit of a misnomer, since one rarely calculates RG flows in this approach
and hence it is not easy to decide on questions of universality using this technique. Moreover,
the approach is purely numerical. Instead in this paper, we will use the so-called standard (also
called SLAC) approach [18]. We have applied this RG method to the study of the stationary state
properties of some interacting particle systems. We found that the method works surprisingly
well in several cases which we studied. These include a solvable reaction–diffusion model
(with diffusion, coagulation and decoagulation) and the contact process, which has a transition
which is also thought to be in the directed percolation universality class.

This paper is organized as follows. In section 2 we briefly introduce the description of
stochastic processes in a quantum mechanical language. In section 3, we discuss the SLAC real-
space approach to the ground state of quantum (spin or fermion) chains. We also discuss how
critical exponents for stochastic systems can be obtained from such an approach. In section 4
we study properties of the stationary state of some solvable reaction–diffusion systems. In
section 5, we give our results for the contact process. Finally, in section 6 we present some
conclusions and an outlook on further applications of the real-space RG technique.
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2. Quantum formalism of reaction–diffusion systems

In this section we discuss the relation between stochastic processes in continuous time on the
one hand and quantum mechanics on the other hand [19,20]. This relation was (independently)
discovered by several authors, and has been developed extensively in recent years (see,
e.g., [21–24]). We only give a brief overview, with the aim of fixing our notation (which
to a large extent is the one used in [5]).

Consider a one-dimensional lattice ofL sites and letη = {η1, . . . , ηL} (ηi = 0(1) when
no (a) particle is present at sitei) be the microscopic configuration of the particle system.
Furthermore, we denote byP(η, t) the probability that the system is in configurationη at time
t . The time evolution ofP(η, t) is determined by the transition ratesw0, w1, . . . , ws of the
model. In general, one of these is used to fix the time scale (sayw0 = 1). We will collect the
remaining rates in a vectorEw = (w1, . . . , ws).

As a first step in turning the stochastic description into a quantum mechanical one, we
associate with each stateη a basisvector|η〉 of a 2L-dimensional vector space. Next, we
introduce a state vector|P(t)〉

|P(t)〉 =
∑
η

P (η, t)|η〉. (1)

The time evolution of|P(t)〉 is described by the master equation

d|P(t)〉
dt

= −H |P(t)〉 (2)

whereH is a (2L × 2L) matrix which depends on all the transition rates of the system. In
particular the matrix element−Hζ,ξ > 0 (for ζ 6= ξ ) equals the transition rate to go from
configurationξ to configurationζ . Due to the conservation of probability the diagonal elements
are given by

Hζ,ζ = −
∑
ξ 6=ζ

Hξ,ζ . (3)

This relation implies that the sum of the elements in a column ofH equals zero, a condition
which we will refer to as thestochasticity condition.

It is now common to consider (2) as a Schrödinger equation (in imaginary time)
and callH the Hamiltonian. In contrast to the quantum mechanical situationH is not
necessarily Hermitian. Hence, left and right eigenvectors are, in general, not related by simple
transposition. In situations where there are only local interactions we can writeH in terms of
local operators. In the particular cases studied in this present paper, transitions involve at most
two sites so that one can write

H =
∑
j

11⊗ · · · ⊗ 1j−1⊗Hj,j+1⊗ 1j+2⊗ · · · ⊗ 1L

which is commonly abbreviated toH =∑j Hj,j+1.
For reaction–diffusion systems with one type of particle, it is common to interpret the

model as a spin model (where a spin up (down) corresponds the absence (presence) of a
particle) so that one writesH in terms of the four matrices

v =
(

1 0
0 0

)
n =

(
0 0
0 1

)
s+ =

(
0 1
0 0

)
s−
(

0 0
1 0

)
. (4)

The stochasticity condition implies the existence of at least one eigenvalue which equals
zero and an associated left eigenvector〈s| given by

〈s| =
∑
η

〈η|. (5)
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Moreover, it can be shown that the real part of every eigenvalue is non-negative.
The formal solution of the master equation (2) is

|P(t)〉 = e−Ht |P(0)〉. (6)

With any physical quantityx (such as the density of particles) an operator (matrix)X

can be associated in the following way. Ifx(η) is the value of the physical quantity in the
microstateη the matrix elements ofX are defined as〈η|X|η′〉 = δη,η′x(η). As an example,
the number of particles at sitei is given by the operator

Ci = 11⊗ · · · ⊗ 1i−1⊗ ni ⊗ 1i+1⊗ · · · ⊗ 1L. (7)

Hence we get

〈X(t)〉 =
∑
η

x(η)P (η, t)

= 〈s|X|P(t)〉
= 〈s|Xe−Ht |P(0)〉. (8)

In this paper, we will be mainly interested in stationary state properties of the stochastic system.
In that limit, (8) is determined by the ground state(s)|0〉 of H . In particular, (8) becomes

xst = lim
t→∞〈X(t)〉 = 〈s|X|0〉 (9)

in the case of a non-degenerate ground state|0〉.
In summary, when we want to study properties in the stationary state of a stochastic system

we are in need of a (real-space) RG which is suitable for the ground state of quantum spin
systems. In the next section, such an approach will be presented.

3. Ground state renormalization for quantum spin systems

The real-space RG method which we will employ in this work is known as the standard or SLAC
(after the Stanford Linear Accelerator, where the technique was introduced [18]) approach.
It was used a lot in the early 1980s to study ground state properties of several quantum spin
and fermion chains (for a review, see [29]). As usual in real-space RG methods, the lattice is
divided into cells, each containingb sites. The HamiltonianH is then divided into an intracell
partH0 and an intercell partV . If α labels the cells, one can in the particular case of one
dimension write

H =
∑
α

(H0,α + Vα,α+1). (10)

As a first step, the Hamiltonian within one cellH0,α is diagonalized exactly. LetH0,α have
eigenvaluesEn,α with corresponding right (left) eigenvectors|n〉α (α〈n|). One then selects
two low-lying eigenstates (for example, the ground state|0〉α and the first excited state|1〉α)
and considers them as effective spin states for the cell:|+α〉′ = |0〉α and |−α〉′ = |1〉α.
Renormalized lattice states|σ 〉′ can then be constructed by making tensor products over all
cells: |σ 〉′ = ⊗α|σα〉′. These states span a 2L/b-dimensional vector spaceW.

The renormalization transformation, which always involves an elimination of degrees of
freedom, is now performed by projecting the original Hamiltonian ontoW. Mathematically
this is achieved by introducing a 2L × 2L/b-matrixT2 whose columns contain the vectors|σ 〉′
together with a 2L/b×2L-matrixT1 whose rows contain the vectors′〈σ | (which are constructed
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from the left eigenvectors ofH0,α). In all the cases we have encountered it was possible† to
normalize the left and right eigenvectors in such a way that

T1T2 = 1 (11)

where 1 is the identity operator onW.
Then the renormalized HamiltonianH ′ is defined as

H ′ = T1HT2. (12)

The transformation (12) will define a mapping in the parameter spaceEw′ = f ( Ew), from
which fixed points and critical exponents can be determined as we will explain further below.

The procedure which was defined above at first sight seems to be ratherad hocand
non-perturbative. Further insight into the method was obtained when its relation with more
conventional real-space RG approaches was discovered [28]. These approaches [25,26] work
at finite temperatureT and are a direct extension of the Niemeijer–Van Leeuwen [27] real-space
approach to the case of quantum spin systems. As in the SLAC approachH0,α is diagonalized
exactly, while the intercell interaction is treated in a perturbative way, taking into account in
an appropriate way the fact thatH0 andV generically do not commute. In [28] it was shown
that if one starts from such a finite-temperature approach, makes an expansionto first order
in V , and then takes the limitT → 0, one recovers the SLAC approach. This relation is
useful for several reasons. First and most importantly, it shows that the SLAC approach is
perturbative and one obtains a procedure to calculate higher-order corrections. Secondly, since
the finite-temperature RG is constructed to conserve the partition function, one is guaranteed
that forT → 0 the ground state energy is conserved. In practice however, any real calculation
is limited to a finite order inV so that the ground state energy is only approximately conserved.

Going back to reaction–diffusion systems, which are non-equilibrium systems, we are
thus guaranteed that our RG approach conserves the ground state energy. Using (9) this can
be written as

〈s|H |0〉 = ′〈s|H ′|0〉′. (13)

In principle, we also have a recipe to calculate perturbative corrections to the SLAC
approach. In this paper, we will limit ourselves to calculations in first order. Higher-order
corrections usually lead to a proliferation of terms in the Hamiltonian. However, as we will
discuss in our conclusions, the existence of these higher-order terms will be necessary for a
proper study of the BARW withm = 2, or for any other model in whichH contains terms
involving three or more sites. Since our calculation only goes to first order, (13) only holds
approximately.

We now turn to a discussion of how steady state properties can be determined from the
RG mappingEw′ = f ( Ew). To fix ideas, let us assume that this equation has a non-trivial fixed
point at Ew = Ew?, with one relevant scaling field (which in linear approximation is proportional
to1w1 = w1−w?1) whose scaling dimension isyw1. From standard RG theory it then follows
that, near criticality, the correlation lengthξ will diverge asξ ∼ |1w1|ν⊥ with ν⊥ = 1/yw1.

In general, it will be so that after renormalizationw′0 6= 1. Hence time needs to be rescaled
again, which is achieved by dividingH ′ byw′0. The numberw′0( Ew?) therefore teaches us how
time rescales under a rescaling of space. We can use this quantity to calculate the exponentz

as

w′0( Ew?) = b−z. (14)

† In the case that the ground state of the cell Hamiltonian is degenerate this is trivial to do. Otherwise, it is necessary
to work with a linear combination of the ground state and an excited state which amounts to performing a similarity
transformation.
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Fromν⊥ andz, scaling [30] gives us the exponentν‖ = ν⊥/zwhich determines the divergence
of the relaxation time near the critical point.

Next, we turn to the calculation of the particle densitycst. If we introduce a (non-stochastic)
HamiltonianH̃ = H + hCi (i arbitrary) we can, for atranslationally invariantsystem write

cst = 〈s|Ci |0〉 = ∂〈s|H̃ |0〉
∂h

(h = 0). (15)

Next, we renormalizeH̃ , using (12). The simplest possible case is the one in which the
renormalization of the operatorCi does not involve other operators so thatT1CiT2 = a( Ew)Cα.
ThusH̃ ′ = H ′ + h′Cα with h′ = a( Ew)h. Inserting this result into (15), and using (13), we
obtain (where we now explicitly denote the dependence ofcst on the transition rates)

cst( Ew) = ∂h′

∂h
·
[
∂ ′〈s|H̃ ′|0〉′

∂h′
(h′ = 0)

]
= a( Ew)cst( Ew′). (16)

This relation can be iterated along the RG flow, and hence the density of particles can be
obtained as an infinite product if one knows the density at the fixed pointEw?t which attractsEw
(where thet reflects the fact that this attractive fixed point is trivial and not critical):

cst( Ew) =
[ ∞∏
i=0

a( Ew(i))
]
cst( Ew?t ). (17)

In principle correlation functions can be calculated in a similar way.
Near the critical fixed pointEw? we get, from (16), for the singular part ofcst (to leading

order in1w1)

cst(1w1) = a( Ew?)cst(b
yw11w1). (18)

From this relation we see thata( Ew?)determines the rescaling of the particle density at criticality.
We writea( Ew?) = bD−d whereD can then be interpreted as the fractal dimension of the sites
that are occupied by particles at criticality. Finally, from (18) we get the behaviour of the
particle density close to the critical point as

cst(1w1) ∼ (1w1)
(d−D)/yw1 (19)

so that we obtain the scaling relationβ = (d − D)ν⊥. Finally, θ can be obtained from the
scaling relationθ = β/ν‖ [30].

It is straightforward to extend these reasonings to the case where the transformation ofCi
is more complicated.

We thus see that a complete characterization of the stationary state particle density and of
all the critical properties of the system can be obtained from our RG approach. In the next two
sections we test our method on simple stochastic systems. The first one is an exactly solvable
reaction–diffusion system with a trivial transition. The second one is the well known contact
process which has a non-trivial transition thought to be in the DP universality class.

4. Renormalization for a simple reaction–diffusion system

We consider a model with diffusion, decoagulation (which is the processA + ∅ → A + A,
∅ + A → A + A) and coagulation. We will use the diffusion rate to fix the time scale, so
that our model has two independent rates which we will denote asw1 (decoagulation) andw2
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(coagulation). The local HamiltonianHi,i+1 in this case can most conveniently be written as a
4× 4-matrix:

Hi,i+1 =


0 0 0 0
0 1 +w1 −1 −w2

0 −1 1 +w1 −w2

0 −w1 −w1 2w2

 (20)

or in terms of the matrices (4) as

Hi,i+1 = 2w2(nini+1) + (1 +w1)(nivi+1 + vini+1)

−s+
i s
−
i+1− s−i s+

i+1− w2(s
+
i ni+1 + nis

+
i+1)− w1(nis

−
i+1 + s−i ni+1). (21)

With a similarity transformation this Hamiltonian can be mapped onto that of a free fermion
system [31], from which many exact results can be obtained.

To renormalize this model, we takeb = 2, so thatH0,α equals (21). The spectrum of
Hi,i+1 can be calculated trivially. The ground state is doubly degenerate and we identify the
corresponding eigenstates as effective spin states. In particular, we have (we use spin language
where|+〉 (|−〉) denotes a vacancy (anA-particle))

|+〉′ = | + +〉
′〈+| = 〈+ + |
|−〉′ = 1

N
[| +−〉 + | − +〉 + r| − −〉]

′〈−| = 〈+− | + 〈− + | + 〈− − |

(22)

wherer = w1/w2 andN = 2 + r. Notice that we normalize the states as probability vectors
(and not quantum mechanically).

Next, we calculateH ′ using (12). We find that the renormalized Hamiltonian contains
the same terms as (21). Moreover, the transformation conserves the stochasticity condition.
The renormalized diffusion rate is 1/N . We divide the Hamiltonian by this factor (rescaling
of time). ThenH ′ has completely the same form asH but with renormalized values forw1

andw2. The RG equations forw1 andw2 are

w′1 = w1
1 +w1 +w2

w2
(23)

w′2 = w2
1 +w1 +w2

2w2 +w1
. (24)

The flow generated by these equations is shown in figure 1. There is a fixed point atw2 = 1,
w1 = 0 (pure coagulation fixed point). The linew2 = 1 is an invariant line. The RG equations,
linearized at the fixed point, have one relevant eigenvalue (which leads toyw1 = 1), together
with an irrelevant eigenvalue.

Next, we turn to a calculation of particle density in the stationary state using the scheme
outlined in the previous section. ProjectingCi ontoW we find the simple recursion

(Ci)
′ = 1 + r

N
Cα. (25)

From this we have

a(w1, w2) = 1 +w1/w2

2 +w1/w2
.

Since alsow′1/w
′
2 depends only on the ratiow1/w2 we arrive at the conclusion that the particle

density only depends on that ratio. Its precise value can then be calculated by making a product
of a(w1, w2) along the RG flow. From figure 1 we see that all points withw1 > 0 flow to
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w1

w21

Figure 1. Schematic RG flow in the(w1, w2)-plane.
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Figure 2. Particle density in the stationary state of the diffusion, coagulation, decoagulation model.
The full curve represents the exact result, the circles are the RG results.

points wherew1/w2→∞. In that limit cst = 1. Then, using (17) we can obtain the particle
density. In figure 2 we plot the result forcst as a function ofr together with the exact result [31]

cst(r) = r

r + 1
. (26)

Within the numerical accuracy, both results coincide. Hence it seems that we recover the exact
result! This might seem surprising since our calculation is only precise to first order inV .
With hindsight the accuracy of our result can be understood by the fact that the ground state of
the whole system is a product of one-particle states. Nevertheless, this calculation illustrates
nicely the use of the method. Moreover, it gives an RG flow for the problem which cannot be
obtained in any other way.

To conclude this section, we calculate the exponentβ which determines the behaviour
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of cst nearr = 0. From the exact result (26), one obviously hasβ = 1. On the other hand,
from (25), we havea(0, 1) = 1

2, henceD = 0 and usingyw1 = 1 we recover the exact result
β = 1.

At this place it is appropriate to mention that for other simple reaction–diffusion systems
we can also recover exactly known results. An example is a model with diffusion, decoagulation
and death (which is the processA + ∅ → ∅ + ∅, ∅ + A → ∅ + ∅). This model undergoes a
first-order transition [31]. When the decoagulation rate is greater then the death rate,cst = 1,
whereas when the opposite inequality holds, one hascst = 0. The RG recovers this exact
result. As usual, the first-order transition is controlled by a discontinuity fixed point.

We also recover an exact result for a model with diffusion, annihilation and pair creation
∅ + ∅ → A +A. An exact solution, first obtained by Rácz [32], shows thatcst grows with the
square root of the pair creation rate. The same power is found within our RG method.

5. The contact process

The contact process was originally introduced as a simple model for an epidemic [33]. In that
interpretation a particle corresponds to a sick person, and a vacancy to a healthy individual.
In the process particles can disappear (A→ 0) with a ratew0 = 1. Empty sites can become
occupied with a rateλz/2, wherez is the number of occupied neighbours of the empty site
(this represents contamination in epidemic terms). This model cannot be solved exactly, but
its critical exponents are known to high accuracy [4]. On the basis of numerical data, and
from symmetry arguments, it is generally believed that the model is in the DP universality
class [34,35].

The Hamiltonian corresponding to this model contains one-site terms (for the process
A → 0) and two-site terms (for the contamination process). The local Hamiltonian for the
model is

Hi,i+1 =


0 0 −1 0
0 λ/2 0 −1
0 0 1 +λ/2 0
0 −λ/2 −λ/2 1

 . (27)

We will split the whole Hamiltonian in such a way thatH0,α contains the same number of
two-site contribution as one-site terms. Then, the same holds forV . This guarantees, at least
for the contact process, that the ground state of the intracell Hamiltonian is a doublet. These
states are then the natural candidates to be used as effective cell spins.

We will perform a renormalization for this process using a cell withb = 3. The calculation
is straightforward and can most effectively be done using Mathematica. It came as a surprise to
us that also in this case, there is no proliferation of interactions in the renormalized Hamiltonian.
The RG equation forλ is

λ′ = λ3(2 +λ)(8 + 10λ + 4λ2 + λ3)

4(16 + 40λ + 37λ2 + 18λ3 + 4λ4)
. (28)

This equation has one non-trivial repulsive fixed point atλ = λ? = 3.223 19. This value
is surprisingly close to the best known numerical value for the contact process which is
λc = 3.2978 (all numerical results are taken from [36]). From a linearization of the RG
equation near the fixed point, we obtainyλ = 0.8886, from which we obtainν⊥ = 1.1253, to
be compared with the numerically determined value of 1.0972.

Finally, we need to determineD. As explained in section 3, one therefore has to
renormalize the operatorCi . In a cell with b > 3 there is no translational invariance and
hence the density of particles depends on the particular value ofi that is chosen. This choice
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Figure 3. Particle density in the stationary state of the contact process as obtained from the RG
approach.

can be made in several ways. Either one projects the operatorCm wherem is a site at or near
the middle of the cell. Alternatively we can take an ‘average’ operatorCa:

Ca = 1

b

b∑
i=1

Ci.

We have performed both calculations. They give respectivelyD = 0.6391 andD =
0.6940, from which we obtainβ = 0.4061, respectivelyβ = 0.3444. These values should be
compared with the precise numerical estimateβ = 0.2769. Other exponents can be obtained
using scaling relations. We getν‖ = 1.6409, θ = 0.2099 whereas the best known values
areν‖ = 1.736, θ = 0.1597. We thus see that, taking into account the smallness of the cell
considered, our estimates ofλc and all critical exponents are close to the known values.

In figure 3 we finally plotcst(λ) as obtained from our RG approach.
We are currently extending our calculations for the contact process to larger cell sizes.

We hope that our approach, combined with suitable extrapolation techniques, is able to give
very precise estimates of critical exponents.

6. Conclusions

In this paper we have investigated the applicability to reaction–diffusion processes of a quantum
real-space RG method. We first studied simple processes for which exact information is
available. In three cases, these exact results are reproduced in calculations done on very small
cells.

For the contact process, which contains a non-trivial critical point, rather accurate estimates
for the location of the critical point and for critical exponents are obtained from a calculation
on a cell of three sites.

So far, we encountered one system in which the RG predicted wrong results. This is
a model with diffusion, coagulation and birth (∅ + ∅ → ∅ + A, ∅ + ∅ → A + ∅). When
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the diffusion rate equals the coagulation rate, this model belongs to a class which is, at least
partially, integrable [37]. For small birth ratesw3, cst is known to grow asw1/3

3 . The application
of our technique to that model raised several difficulties. The ground state ofH0,α is a singlet,
and for the first excited state there is a crossing of energy levels (in finite systems). Hence,
there is no obvious choice for the effective cell states. For a specific choice we made, the
renormalized HamiltonianH ′ turns out to have a form different from the original Hamiltonian
H , but there is a similarity mapping thisH ′ ontoH with renormalized couplings, and an extra
decoagulation term. If we define the full RG as the projection (12), followed by the similarity
we are able to obtain a flow in parameter space. Unfortunately, our results indicate that for cells
with b = 2 andb = 3,cst grows asw1/2

3 . We hope to clarify the RG for this model in the future.
Recently, several authors ( [15–17]) applied the DMRG to non-equilibrium systems. The

first two papers studied exclusion processes while in the third work two reaction–diffusion
systems were studied. For the few cases studied so far, the DMRG is found to produce
accurate results for correlation functions and critical exponents. In order to get results of
the same accuracy using our real-space approach it is necessary to go to larger cell sizes.
We are currently performing such a calculation for the contact process. It is our hope that
in this way, and using good extrapolation techniques, it is possible to produce estimates for
critical exponents of the same accuracy as that obtained from the DMRG. Moreover, our
method allows the calculation of RG flows which are very helpful in deciding questions on
universality, relations between different models and so on. To our knowledge such information
cannot be obtained from the DMRG.

Another project we hope to carry through is a study of the BARW withm = 2. As stated
in the introduction, there are few reliable analytical results on the critical properties of this
system. A particularly nice model that is known to be in this universality class was introduced
by Menyh́ard. It is a non-equilibrium Ising model (NEKIM) with Glauber dynamics at zero
temperature and Kawasaki dynamics at infinite temperature [38]. It was recently shown that
this model is selfdual [39]. The ground state energy of the quantum Hamiltonian corresponding
with this model is for all finite systems again doubly degenerated, so that effective cell states
can be defined unambiguously. The quantum Hamiltonian for the NEKIM contains a three-site
interaction term. Under the RG, performed to first order, such a term will be mapped onto a
two-cell interaction term. However, by extending the SLAC-approach to second order inV ,
as discussed in section 3, one could generate a renormalized three-cell interaction. In fact,
from a mathematical point of view, the Hamiltonian of the NEKIM is rather similar to that of a
transverse Ising model with three spin interactions [40,41]. That model also has a self-duality
and was renormalized successfully by using our approach to second order [42]. An alternative
model in the universality class of the even-m-BARW is a recently introduced variant of the
contact process in which particles disappear and are contaminated in pairs [43]. Since this
model does not involve any diffusion, it may be simpler to analyse.

While the technique presented here allows the calculation of some dynamic properties
(such as the exponentsz and θ ) it is at present not at all clear whether it is possible to
say anything about early time critical exponents. One must take into account that even for
equilibrium critical phenomena no good real-space approach to dynamical aspects has been
developed.

It has of course to be admitted that real-space RG methods in general involve some ill
understood approximations. Furthermore, as the well known saying by K Wilson ‘One cannot
write a renormalization cookbook’ indicates, it is nota priori possible to indicate for which
systems an approach such as the one presented here can be succesful. For each model one has
to investigate independently how to perform the RG, taking into account all known symmetries,
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dualities and so on.
Nevertheless, it is our opinion that the results presented here give considerable hope that

our RG can succesfully be used to further understand the critical behaviour of non-exactly-
solved systems such as the BARW.
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Note added in proof. The steady state densitycst for the simple reaction–diffusion system considered in section 4 can
be obtained exactly from the RG approach. The recursion relation forr = w1/w2 is r(n+1) = r(n)(r(n) + 2) (where
r(n) is thenth iterate ofr) while a(r) = (1 + r)/(2 + r). DefiningGn(r) =

∏n
i=0 a(r

(i)) one can see that forr > 0

1 + r

r
Gn(r) = 1 +

1

r(n+1)
.

Sincer(n) → ∞ for n→ ∞, we recover the exact result (26)cst = r/(r + 1). We thank an anonymous referee for
pointing out this derivation.
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[41] Vanderzande C and Iglói F 1987J. Phys. A: Math. Gen.204539
[42] Vanderzande C 1984PhD ThesisLeuven University
[43] Inui N and Tretyakov A Yu 1988Phys. Rev. Lett.805148


